
White paper

Optimizing Your 
Cloud Migration:
4 Paths to Consider for a Successful 
Move to the Cloud

II



Optimizing Your 
Cloud Migration
A company can take many paths when moving to the public 
cloud. Deciding how to migrate to AWS should be a process 
that focuses on each individual workload, rather than trying 
to find a single solution to be used across the board. Key to 
these decisions are factors around: 

• Level of engineering effort

• Time constraints

• Licensing restrictions

• In-house vs. Commercial-Off-The-Shelf
(COTS) software

• Resource requirements

With each of these limitations in mind, there are a few 
paths that should be assessed for viability as you decide to 
make your migration plans. Rackspace Technology always 
recommends assessing these paths in this order, as they 
are organized from most-to-least ideal.

If a path is not possible, scrap it and move on to the 
next. It’s important to remember that these paths are not 
interchangeable. Rather you should carefully consider 
everything before eliminating a path from your process.

Reinvention

Cloud-Native

Retire tech debt

Time

Value

Foundation

Project

Migration

2



Retire/
Decommission

Refactoring

Re-writing/decoupling

applications

Retain/
Not moving

Discover/Assess/Prioritize 
Applications

Determine 
Migration
Path

Rehosti
ng

Lif
t a

nd sh
ift

Determine new
platform

Repurchasing
Replace — drop and shop

Replatforming

Lift and reshape

Automate

Manual

Modify underlying
infrastructure

Use migration tools

Manual install Manual config

Manual deploy

Validation

IntegrationFull ALM/SDLCApp Code
Development

Redesign application/
Infrastructure architecture

Purchase COTS/SaaS
and licensing

Manual install
and setup

Transition Production

The Four Migration Paths

3



Refactor for Cloud 
Native Design
Refactoring for cloud native design is the path that requires 
the most forethought, planning, engineering effort and time 
overall to implement, but benefits from being the most 
stable solution overall.

Refactoring existing applications as they are currently 
used and written allows for the option to fully automate 
the build/test/release cycle processes (leveraging more 
modern CI/CD pipelines), and ensures that old workloads 
get updated to modern processes and architectures. 
The opportunity to take an old, problematic application 
and re-write it to be cloud-native may include serverless 
options, the opportunity to incorporate native backup and 
restore solutions, disaster recovery or highly distributed 
design and architecture, and anything else that would allow 
you to benefit from the services provided by the public 
cloud. Often this even includes moving away from existing 
data structures toward a more modern database engine, 
providing an opportunity to escape expensive licensing by 
choosing open-source standards, etc.

Planning around this requires extensive research to identify 
and resolve automated processes around every aspect 
of the workflow. Concepts common to this model would 
require DNS automation, service discovery, blue-green or 
canary deployment, centralized logging, version control 
workflows, artifact creation and storage, etc. — the list 
goes on, and there are a lot of things to think about. A high 
level of maturity is strongly recommended for making these 
decisions, whether that’s internally or through the use of a 
trusted partner. 

This is not necessarily always an option, however. The major 
factors that play into this option are the obvious ones: time 
and money. An organization may not have the engineering 
resources or maturity to implement a custom, cloud-
native solution to an off-the-shelf application currently 
in use today. Even in-house applications may not be 
worth refactoring within the given time, or other business 
priorities may make it an impossibility. Without available 
engineering resources, the company is left in a position 
to hire new talent with those skills, train their existing 
workforce and expect slower delivery of the solution, or 
simply choose an alternative path.

Redesign 
Application/
Infrastructure
Architecture

Re-writing/Decoupling applications

Refactoring

App Code
Development

Full ALM/SDlC Integration

Refactoring

4



Automate with Cloud-Native 
Architecture
Ideally, this solution is also paired with CI/CD deployment 
processes to solidify process and automate concepts 
inherently throughout the organization, allowing for simpler 
onboarding processes for other applications that can follow 
this model. Most often this process will include several 
phases of pipelines, will perhaps make use of baseline 
machine images for ready-use in infrastructure templates 
and will leverage a deployment mechanism for applications 
onto these machines post-creation.

Straying a little further away from a full refactor is the idea 
of taking the same applications and mindsets, but migrating 
them with more cloud-native architecture. This means using 
automation from start to finish, codifying all infrastructure 
and designing with the benefits of the public cloud in 
mind for availability and disaster recovery. An example of 
this would be to take a workload in your data center today 
and write functional code to deploy its infrastructure and 
application installation into the cloud in such a way that it’s 
highly available (self-healing with autoscaling groups and 
effective health-checks).

Repurchasing

Purchase COTS/
SaaS and licensing

(Replace — drop and shop)

Repurchasing

Manual install
and setup

5



An Overview of Pipeline 
Driven Migration
Many, if not all, of the external processes that would need 
to be identified for this strategy are the same as a full 
refactor, as things like DNS and service discovery may prove 
to be necessary components for the levels of automation 
that are intended. Deployment processes need to be 
identified, artifacts still need to be built, and code needs to 
be written for all of these things to talk to each other. The 
Migration as Code approach is still key here, and Rackspace 
Technology uses this approach when other business 
priorities make full refactoring a challenge.

This is a very common path to take as it requires less 
engineering effort than a full refactor and still allows 
for many of the benefits of the cloud. Obstacles to this 
process may come in the form of licensing limitations for 
the workload, the application behavior or installation, or 
again the obvious factors of limited time and resources. 
For example, it may be relatively simple to automate the 
installation and configuration of a web application running 
in Apache on Ubuntu simply because of the nature of the 
operating system, its scriptability and the configuration 
processes required. However, an off-the-shelf application 
running on Windows may be packaged in such a way that 
the installation cannot be fully automated despite all the 
neat tricks in your toolbelt, or may require that the vendor 
log into the server after installation in order to manually 
license the application (yes, this happens), or any number 
of factors that make it impossible to automate the process 
end-to-end. Workarounds can likely be identified for some 
of these issues, but it all depends on the amount of time 
and energy the organization wants to sink into this process 
before cutting losses and choosing another path.

Git

Source Code

Build

Code Pipeline

Binary Artifacts Repository

Images

Cloud
CM Tools

Runway Deploy

CI Orchestrator 

CI Orchestrator 

VM Images

Docker Images

VMs

Containers

Language/Platform
Packages

Artifacts Repository

Package Repos

Artifact Prep

S3

6



Partial Automation
Partial automation is a further step back. In situations 
where fully automated processes simply can’t be achieved, 
the concepts of “infrastructure as code” and partial 
automation step in to bridge the gap.

Infrastructure code can be written to deploy resources 
such as servers, load balancers, etc. but in this path 
manual intervention is required to install and configure 
the workloads, databases and glue in between those 
components. An example of this might be a common 
workload “farm” at an enterprise: AWS CloudFormation 
or Terraform may be written to deploy a collection of 
servers in the server farm, database servers running a 
given version of the database engine, load balancers pre-
configured with a few listener rules and security groups 
to ensure connectivity between resources. From here, a 
systems administrator or application owner would log into 
the servers, run installation scripts if possible, manually 
configure connectivity between nodes by including static IP 
addresses or hostnames, etc.

This is still a beneficial path in the event that the migration 
path is very large. Often times this automation, while not 
end-to-end, can still be leveraged for its generality. The 
same infrastructure code to launch an eight-node Windows 
farm with a load balancer can likely be used to deploy a six-
node Linux cluster intended for a Cassandra installation, 
with only a few tweaks to the number of nodes, the machine 
image used, and a yes/no option for the load balancer. 
Even incorporating this level of automation can therefore 
help accelerate additional effort in the future, and provides 
a starting point for later ventures into the more complex 
automated paths.

The downsides of this path are obviously the fact that 
things are being done manually. This inherently means that 
instead of treating your services like nameless, faceless 
resources that do their job on their own, you’re stuck in the 
older data-center-centric model of naming your servers, 
taking care of them and troubleshooting them when they 
fail. While this may sometimes be a necessary approach, 
Rackspace Technology still tries to avoid it when possible. 
Our belief is that using a model that acts as a data center 
prevents you from getting the exciting futuristic benefits of 
the cloud, impacting the overall value to you. Instead, we’ve 
done more of just moving our datacenter to somewhere 
else, but we have a lot of exciting scripts that we’ve written, 
and can hopefully use what we’ve learned writing them to 
move forward to more automated processes! 

Determine
new platform

Replatforming

Lift and reshape Modify underlying
infrastructure

Replatforming

7



Lift and Shift
This migration path uses some sort of third party tool 
typically to create a duplicate machine as is currently 
running on-premises or in colocation, sends it to the AWS 
Cloud as a machine image, and then launches the server in 
AWS. It is essentially an identical, block-for-block clone of 
the original machine. Often the tool used for this process 
provides simple interfaces for managing this process, and 
can typically synchronize data changes as they happen 
on the live machine up to the virtualized image. This is a 
particularly ideal choice with the “black box” situation, a 
server that has been around since the dawn of the company 
running exceptionally important business logic, except 
nobody knows how it works or what it does exactly. As long 
as the baseline requirements are met for the migration 
tool, you can ship it up to AWS and turn it on, and it’ll be 
the same box as on-premises. When it comes to speed and 
minimal level of expertise required, this is generally the 
easiest way to go, with some significant caveats.

The tools that offer this migration path are very limited. 
They can achieve their task (usually) but can’t handle 
variation on that process. They also cannot be automated, 
as the target demographic tends to prefer Graphical User 
Interfaces over scripting languages or command-line 
options, so commercially this is where the vendors spend 
their development energy. These tools can often be very 
expensive, and require licenses to be purchased per server 
slated for migration.

Data synchronization may not be able to keep up with 
highly active changes, and we’ve seen multiple cases where 
a database was started with this process and could never 
keep up with shipping the delta up to the cloud, eventually 
falling farther and farther behind until a new migration 
strategy had to be implemented. Finally, sometimes things 
just don’t work, the image doesn’t boot for mysterious 
reasons, and nobody (even the vendor) seems to know why, 
and you just have to try again or find another solution. At 
the end of the day, Rackspace Technology recommends 
avoiding a Lift and Shift migration at all costs because not 
only will there be inevitable problems in your migration, but 
you won’t be able to utilize the full potential of the cloud.

Most commonly, the issue with this migration path 
tends to be the inability to test effectively in Windows 
environments, tied to the use of Active Directory. When a 
Windows instance joins Active Directory, it defines several 
factors about itself that just aren’t very cloudy: hostnames 

Determine
Migration
Path

Automate

Rehosti
ng

Lif
t a

nd sh
ift

Use migration tools

Validation Transition Production

Rehosting

8



often need to stay static for DNS and application-config 
purposes, the operating system sets several unique 
identifiers in the Windows registry that specifically define 
what this machine is and what it does, etc.

All of these things mean that if a second machine were to 
come up at the same time and connect to Active Directory, 
there would be duplicate machines, Active Directory would 
become angry, and things will just not work right. Your 
SysAdmins will have a terrible time troubleshooting the 
issues and you’ll probably end up with production outages. 
This means that testing the generated machine image 
needs to happen in a bubble without connectivity to Active 
Directory, which usually means your application doesn’t 
even work, which means the testing is pretty useless. All 
actual testing really needs to happen during cutover, while 
the production instance is down and disconnected, leading 
to even longer outage windows.

Honorable Mention: 
Data Migration
Data is a special factor in all these migration paths, 
inevitably centered around what the expected downtime 
during cutover can be. With very large Recovery Time 
Objectives, a database can be taken offline, backed up, the 
backup sent to a new database server in AWS, and traffic 
shifted to this new server. With very low RTO, the ideal 
scenario is to attempt to expand the database cluster by 
adding a replica in AWS, ensuring streaming replication in 
near real-time, and then cutting to the replica using the 
database’s own failover mechanisms. These capabilities 
are limited to the database engine in use, and potentially 
the licensing level of that database, so always be sure 
to perform discovery ahead of time any of these factors 
that may come into play when making a decision to 
migrate a database.

Tools which convert data from one database engine to 
another do exist, allowing for migration out of one engine 
and into a comparable platform (MS SQL to PostgreSQL is 
very common). However, these tools tend to manipulate the 
data, and may have technical limitations that make the data 
unusable in the new engine, so this must be tested ahead 
of time. Another issue with this method is that it requires 
testing of client applications to ensure proper connectivity 
to the new database engine.

Conclusion
The overall concept of these points is simply that there is 
no single tool for a migration, and care must be taken to 
identify the proper path for each workload to align it with 
business objectives. At Rackspace Technology, we always 
recommend automating as much as possible, because 
reusability is key when it comes to any technical process.

Learn more at www.rackspace.com or call:
AU: 1800 722 577
NZ: 0800 451 613
HK: 0800 900 330
IN: 000800 100 8796
SG: 0800 120 6726
MY: 1800 812 620

About Rackspace 
Technology
Rackspace Technology is the multicloud solutions 
expert. We combine our expertise with the world’s 
leading technologies — across applications, data and 
security — to deliver end-to-end solutions. We have 
a proven record of advising customers based on 
their business challenges, designing solutions that 
scale, building and managing those solutions, and 
optimizing returns into the future.

As a global, multicloud technology services pioneer, 
we deliver innovative capabilities of the cloud to 
help customers build new revenue streams, increase 
efficiency and create incredible experiences. Named 
a best place to work, year after year according to 
Fortune, Forbes, and Glassdoor, we attract and 
develop world-class talent to deliver the best 
expertise to our customers. Everything we do is 
wrapped in our obsession with our customers’ 
success — our Fanatical Experience™ — so they can 
work faster, smarter and stay ahead of what’s next.

© 2020 Rackspace US, Inc. :: Rackspace®, Fanatical Support®, Fanatical Experience™ and other Rackspace marks 
are either service marks or registered service marks of Rackspace US, Inc . in the United States and other 
countries . All other trademarks, service marks, images, products and brands remain the sole property of their 
respective holders and do not imply endorsement or sponsorship.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS A GENERAL INTRODUCTION TO RACKSPACE TECHNOLOGY 
SERVICES AND DOES NOT INCLUDE ANY LEGAL COMMITMENT ON THE PART OF RACKSPACE TECHNOLOGY.

You should not rely solely on this document to decide whether to purchase the service. Rackspace Technology 
detailed services descriptions and legal commitments are stated in its services agreements. Rackspace Technology 
services’ features and benefits depend on system configuration and may require enabled hardware, software or 
additional service activation.

Except as set forth in Rackspace Technology general terms and conditions, cloud terms of service and/or other 
agreement you sign with Rackspace Technology, Rackspace Technology assumes no liability whatsoever, and 
disclaims any express or implied warranty, relating to its services including, but not limited to, the implied warranty 
of merchantability, fitness for a particular purpose, and noninfringement.

Although part of the document explains how Rackspace Technology services may work with third party products, 
the information contained in the document is not designed to work with all scenarios. any use or changes to third 
party products and/or configurations should be made at the discretion of your administrators and subject to the 
applicable terms and conditions of such third party. Rackspace Technology does not provide technical support for 
third party products, other than specified in your hosting services or other agreement you have with Rackspace 
Technology and Rackspace Technology accepts no responsibility for third-party products.

Rackspace Technology cannot guarantee the accuracy of any information presented after the date 
of publication.

Rackspace-White-Paper-4-Paths-Migration-ITT-TSK-2391 :: August 31, 2020

9




